SINAPSE
SINAPSE
  • Home
  • Overview
  • Research
    • Neuro Prosthetics and BMI
    • Neuro-Chip
    • Neurodevices
    • Neurophotonics
    • Bio Robotics
    • Neuromodulation
    • Cognitive Engineering
    • Clinical Neuroengineering
  • People
    • Director
    • Principal Investigators
    • Postdocs
    • Students
    • Collaborators
    • Alumni
  • Papers
    • Papers
  • Presentations
  • Open Postions
  • News & Events
  • Workshop EMBC2020
  • Workshop EMBC2021
  • Workshop NER2023
  • More
    • Home
    • Overview
    • Research
      • Neuro Prosthetics and BMI
      • Neuro-Chip
      • Neurodevices
      • Neurophotonics
      • Bio Robotics
      • Neuromodulation
      • Cognitive Engineering
      • Clinical Neuroengineering
    • People
      • Director
      • Principal Investigators
      • Postdocs
      • Students
      • Collaborators
      • Alumni
    • Papers
      • Papers
    • Presentations
    • Open Postions
    • News & Events
    • Workshop EMBC2020
    • Workshop EMBC2021
    • Workshop NER2023

  • Home
  • Overview
  • Research
    • Neuro Prosthetics and BMI
    • Neuro-Chip
    • Neurodevices
    • Neurophotonics
    • Bio Robotics
    • Neuromodulation
    • Cognitive Engineering
    • Clinical Neuroengineering
  • People
    • Director
    • Principal Investigators
    • Postdocs
    • Students
    • Collaborators
    • Alumni
  • Papers
    • Papers
  • Presentations
  • Open Postions
  • News & Events
  • Workshop EMBC2020
  • Workshop EMBC2021
  • Workshop NER2023

Neurodevices: Implantable Sensor for Brain-Machine Interface

About

The focus of our group is to develop implantable neurotechnologies for interface to the nervous system. Our experimental focus is to develop interface to nerves, both peripheral nervous system for restoring limb function, and visceral nerves to modulate the autonomic function. The technological focus is on developing A) novel electrodes to interface to nerves – electrodes that small, flexible and compliant to attach or penetrate nerves, B) very large scale integrated circuits to record from or stimulate nerves with low noise and low power specifications, and C) powering schemes, whether self-generated or wireless through capacitive, electromagnetic or ultrasonics. Finally, we build fully implanted system for testing in the animal model to demonstrate restoration of limb and function and visceral organ function.

    Team

    PI: Nitish Thakor, Professor

    Students and Post-Doctoral Fellows

    Mark Iskarous

    Marlena Raczowka

    Marlena Raczowka

    Ph.D. student

    Marlena Raczowka

    Marlena Raczowka

    Marlena Raczowka

    Ph.D. student

    Qihong Wang

    Qihong Wang

    Qihong Wang

    Research Associate

    Anoop Patil

    Qihong Wang

    Qihong Wang

    Post doctoral Fellow

    Collaborators

    Chengkuo (Vincent) Lee

    Chengkuo (Vincent) Lee

    Chengkuo (Vincent) Lee

    National University of Singapore

    Ralph Etienne-Cummings

    Chengkuo (Vincent) Lee

    Chengkuo (Vincent) Lee

    Johns Hopkins University

    Gert Cauwenberghs

    Chengkuo (Vincent) Lee

    Gert Cauwenberghs

    UCSD

    Alumni

    PhD Students

    PhD Students

    PhD Students

    Kartikeya Murari

    Mohsen Mollazadeh

    Elliot Greenwald

    Janaka Senarathna

    Sanghoon Lee*

    Jiahui Wang*


     *students with Vincent Lee 

    Post-docs

    PhD Students

    PhD Students

    Ranga Jegadeesan

    Kian An Ng

    Sudip Nag 

    Publications

    Reviews

    Patil A.C., Thakor N.V., “Implantable neurotechnologies: a review of micro and nano-electrodes for neural recording,” Med Biol Eng Comput, vol. 54(1)., 2016. doi:10.1007/s11517-015-1430-4


    Nag S., Thakor N. V., “Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput, Vol. 54(1), 2016. doi:10.1007/s11517-015-1442-0


    Ng KA, Greenwald E., Xu Y.P., Thakor N.V., “Implantable neurotechnologies: a review of integrated circuit neural amplifiers,” Med Biol Eng Comput, vol. 54(1), 2016. doi:10.1007/s11517-015-1431-3


    Greenwald E., Masters M. R., Thakor N. V., “Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations,” Med Biol Eng Comput, Vol. 54(1), 2016. doi:10.1007/s11517-015-1429-x


    Agarwal K., Jegadeesan R., Guo Y.-X., Thakor N. V., “Wireless power transfer strategies for implantable bioelectronics: Methodological review,” IEEE Reviews Biomedical Eng., Vol. 1- (1), pp. 136-161, 2017. 10.1109/RBME.2017.2683520


    Nuan C. , Luo B., Yang I. H., Thakor N. V., Ramakrishna S., “Biofunctionalized platforms towards long-term neural interface,”  J. Current Opinion Biomed. Eng., Vo. 6, pp. 81-91, 2018. https://doi.org/10.1016/j.cobme.2018.03.002

    Electrode Technology

    Xiang Z, Yen SC, Sheshadri S, Wang J, Lee S, Liu YH, Liao LD, Thakor NV, Lee C, “Progress of Flexible Electronics in Neural Interfacing - A Self-adaptive non-invasive neural ribbon electrode for small nerves recording,” Adv Mater., 2015 Nov 16. doi: 10.1002/adma.201503423. 


    Lee S., Yen S.-C., Sheshadri S., Martinez D., Xue N., Xiang Z., Thakor N., Lee C., “Flexible epineural strip electrode (FLESE) for recording in fine nerves,” IEEE Transactions on Biomedical Engineering, Aug 2015. 10.1109/TBME.2015.2466442.


    Nag S., Sharma D., Thakor N. V., “Sensing of stimulus artifact suppressed signals from electrode interfaces,” IEEE Sensors J., pp. 3734 – 3742, Feb., 2015. DOI: 10.1109/JSEN.2015.2399248.


    Xu N., Sun T., Tsang W. M., Delgado-Martinez I., Lee S-H., Seshadri S., Xiang Z., Merugu S., Gu Y., Yen S-C., Thakor N. V. “Polymeric C-shaped cuff electrode for recording of peripheral nerve signal,” Sensors and Actuators B: Chemical, 210_ 640-648, 2015.


    Wang J., Xiang Z., Gammad G. G. L., Thakor N. V., Yen S.-C., and Lee C., “Development of flexible multi-channel muscle interfaces with advanced sensing function,” Sensors & Actuators: A. Physical, 2016.


    Lee S., Zhuolin Xiang Z., Liao L.-D., Bandla A., Xue N., Thakor N. V., Yen S.-C. and Lee C., “Flexible and adjustable neural interface with selective nerve recording and stimulation for neuromodulation,” Adv. Mater., 2016.


    Lee S., Sheshadri S., Xiang Z., Delgado-Martinez I., Xue N., Sun T., Thakor N. V., Yen S.-C., Lee C., “Selective stimulation and neural recording on peripheral nerves using flexible split ring electrodes,” Sensors and Actuators B: Chemical, Vol. 242, pp. 1165-1170, 2017.


    Puttaswamy S. V., Shi Q., Bandla A., Kim S., Thakor N. V. and Lee C., “Nanowire electrodes integrated on tip of microwire for peripheral nerve stimulation,” IEEE J. Microelectromechanical Systems, 10.1109/JMEMS.2017.2696240.


    Chen N., Tian L., Patil A. C., Peng S., Yang I. H., Thakor N. V., Ramakrishna S., “Neural interfaces engineered via nano- and microstructured coatings.” Nano Today, Vol. 14, pp. 59–83, June 2017. https://doi.org/10.1016/j.nantod.2017.04.007.


    Patil A., Bandla A., Liu Y.-H., Luo B., Thakor N.V., “Nontransient silk sandwich for soft, conformal bionic links,” Materials Today (Revision, under review).

    Circuits, Powering and Wireless

    Sauer C, Stanacevic M, Cauwenberghs G, and Thakor NV, “Power Harvesting and Telemetry in CMOS for Implanted Devices,” IEEE Trans. Circuits and Systems I: Regular Papers, Special Issue on “Biomedical Circuits and Systems: A New Wave of Technology, 52(12):2605-2613, 2005.


    Murari K, Stanaćević M, Cauwenberghs G, Thakor NV, “Integrated potentiostat for neurotransmitter sensing. A high sensitivity, wide range VLSI design and chip,” IEEE Eng Med Biol Mag, 24(6):23-9, 2005. http://www.ncbi.nlm.nih.gov/pubmed/16382801


    Mollazadeh M, Murari K, Cauwenberghs G., and Thakor NV, “Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials,” IEEE Trans. Biomed. Circuits Systems, Vol. 3, No. 1, pp. 1-10, 2009. doi: 10.1109/TBCAS.2008.2005297.  PMID: 20046962


    Murari K, Thakor N V, Cauwenberghs G, “Which photodiode to use: a comparison of CMOS-compatible structures,” IEEE Sensors J., vol. 9, no. 7, pp. 752–760, 2009. http://www.ncbi.nlm.nih.gov/pubmed/20454596.


    Greenwald E, Mollazadeh M,  Hu C, Tang W, Culurciello E,  and Thakor NV, “A VLSI Neural Monitoring system with ultra-wideband telemetry for awake behaving subjects,” IEEE Trans. Biomed. Circuits. Systems, Vol. 5 (2), IEEE Trans Biomed Circuits Syst., pp. 112-119, 2011, doi: 10.1109/TBCAS.2011.2141670, PMID: 23851199.


    Jegadeesan R., Nag S., Agarwal K., Thakor N. V. and Guo Y. X., “Enabling wireless powering and telemetry for neural implants,” IEEE J. Bio. Health Informatics, Vol. 19 (3), pp. 958-970, 2015.


    Greenwald E., So E., Mollazadeh M., Maier C., Wang Q., Etienne-Cummings R., Cauwenberghs G., Thakor, N., “A bidirectional neural interface IC with chopper stabilized BioADC array and charge balanced stimulator,” IEEE Biomed. Circuits Systems, Vol.10(5):990-1002. 2016. doi: 10.1109/TBCAS.2016.2614845.


    Lee S., Wang H., Qiongfeng Shi Q., Dhakar L., Wang J., Thakor N. V., Yen S.-C., Lee C., “Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs),” Nano Energy, Vol. 33, pp. 1-11, 2017. 


    Jegadeesan R., Nag S., Agarwal K., Thakor N. V. and Guo Y. X., “Enabling wireless powering and telemetry for neural implants,” IEEE J. Bio. Health Informatics, Vol. 19 (3), pp. 958-970, 2015.


    Jegadeesan R., Agarwal K., Guo Y.-X., Yen .-C., and Thakor N. V., “Wireless power delivery to flexible subcutaneous implants using capacitive coupling,” IEEE Trans. Microwave Theory and Techniques, Vol. 65, No. 1, pp. 280-292, 2017. 


    Wang J.,  Hao Wang H., Thakor N. V.,  and Lee C., “Self-Powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode,” ACS Nano, Vol. 13, pp. 3589-3599, 2019.


    Palanisamy M., Veluru J.B., Arjun S., Bandla A., Thakor N., Ramakrishna S., Wei H., “Design of thermoelectric generator and its medical applications,” Designs, 2019, 3(2), 22; https://doi.org/10.3390/designs3020022.


    Khalifa A., Liu Y., Karimi Y., Wang Q., Eisape A., Stanacevic M., Thakor N., Bao Z., Etienne-CummingsR., “The Microbead: A 0.009 mm3 implantable wireless neural stimulator" Article reference: JNE-102886 (accepted).

    Neurodevices - Testing and Applications

    Lahiri A., Delgado I. M., Sheshadri S., Ng K., Nag S., Yen S.-C., Thakor N. V.,  “Self-organization of 'fibro-axonal' composite tissue around unmodified metallic microelectrodes can form a functioning interface with a peripheral nerve: A new direction for creating long-term neural interfaces,” Muscle Nerve., Oct 1, 2015 doi: 10.1002/mus.24928. PMID: 26425938.


    Xiang Z., Sheshadri S., Lee S.-H., Wang J., Xue N., Thakor N. V., Yen S.-C., and Lee S., “Mapping of small nerve trunks and branches using adaptive flexible electrodes,” Adv. Sci. , 1500386, 2016, DOI: 10.1002/advs.201500386.


    Lee S. Wang H., Shi Q., Dhakar L., Wang J., Thakor N. V., Yen S.-C., C. Lee, “Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs),” Nano Energy, Vol. 33, pp. 1–11, 2017.

    Powered by